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For expanding industrial applications of a natural convection in a channel under a high temperature dif-
ference, a compressible fluid flow is taken into consideration in governing equations instead of renunci-
ation of the Bossinesq assumption. Due to the slowness of the velocity of fluid in the natural convection,
the Roe scheme matching methods of preconditioning and dual-time stepping are used to solve the gov-
erning equations. In order to resolve reflections induced by acoustic waves at the boundaries of the chan-
nel, non-reflection conditions at the boundaries of the channel are derived.

The results show that a more reasonable pressure distribution in the channel is first validated and aver-
age Nusselt numbers are expressed in terms of Rayleigh number for a wide range temperature difference.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A natural convection in an open-ended finite length channel
which has always attracted much attention is a very important
subject in both academic and industrial researches. The coexis-
tence of the variable density of fluid and slow velocity of flow is
the characteristics of the above subject. For avoiding the complex-
ity of solving process caused by the characteristics mentioned
above, the Bossinesq assumption in which a factor of the variable
density of fluid only affects a buoyancy force is usually adopted
when theoretical analysis of the natural convection is executed.
As for the boundary conditions at the channel outlet, method of
adjustment of the length for satisfying a fully developed flow
[1–8] or no pressure difference between the outlet and surround-
ings is usually used. And the boundary condition at the inlet of
the channel, method of matching a mass conservation or based
on Bernoulli’s equation is proposed.

According to Gray [9], when the temperature difference
between the heat and cold sources of the natural convection prob-
lem is smaller than 30 K, the results obtained by the Bossinesq
assumption are well consistent with the practical situation. How-
ever, in many other important natural convection problems, the
temperature differences are often higher than several hundred
degrees, such as a flow in a chimney, a high temperature drying
process and a deposition process in semiconductor manufacturing
process. Because of the inapplicability of Bossinesq assumption
ll rights reserved.
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under the high temperature difference natural convection, the
problems mentioned above become very complicated and the
related solution methods are seldom proposed. Also, under realis-
tic condition pressure differences between the inside and outside
of the inlet and outlet are existent, respectively. Otherwise, the
fluid from the outside could not flow into the channel and the fluid
in the channel could not be discharged to the outside. These pres-
sure differences would cause acoustic waves induced by the com-
pressibility of fluid to reflect at the inlet and outlet. And when the
related numerical calculation is executed, the solutions in the
channel are easily polluted by the reflections of the acoustic waves
mentioned above which lead the computation processes to be
poorly convergent, especially for a low speed compressible flow.
Therefore, for analyzing the problem of natural convection in a
channel under high temperature difference realistically, in addition
to the consideration of the property of viscosity of fluid, the prop-
erty of compressibility of fluid and the reflection problems at the
inlet and outlet should also be considered simultaneously.

Several related numerical methods had been proposed. In an
explicit numerical method, the time step due to CFL (Courant–
Friedrichs–Levy) condition is limited to an extremely small magni-
tude, and the convergent condition is difficult to be satisfied. In an
implicit numerical method, the stiff situation causes the ineffi-
ciency of calculation to occur easily. For overcoming these defects
mentioned above, Briley et al. [10] used a preconditioning method
to improve the efficiency of calculation for a low Mach number
flow, and adopted the implicit numerical method to resolve the
convergent problem of Navier–Stokes equation. Turkel [11] devel-
oped and applied a preconditioning matrix into problems of
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Nomenclature

g acceleration of gravity (m/s2)
k thermal conductivity (W/mK)
l0 height of channel (m)
l1 height from heat surface to top (m)
l2 height of heat surface (m)
l3 height from heat surface to bottom (m)
_mx mass flow rate (kg/s)
_mx average mass flow rate (kg/s)

Nu local Nusselt numbers
Nu average Nusselt number
P pressure (Pa)
Pr Prandtl number
R gas constant (J/kg/K)
Ra Rayleigh number
t time (s)

T temperature (K)
Tc temperature of surroundings (K)
Th temperature of heat surface (K)
u, v velocities in x and y directions (m/s)
w width of channel (m)
x, y cartesian coordinates (m)

Greek symbols
q density (kg/m3)
l viscosity (N s/m2)
c specific heat ratio
b thermal expansion coefficient (1/K)
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compressible and incompressible flows. Choi and Merkel [12]
investigated convergent problems induced by the stiff situation
and factorization error when an implicit numerical method was
used to solve inviscid flow under a low Mach number flow. More-
over, the convergent problem of 0.05 Mach number flow was suc-
cessfully resolved by using the precondition matrix. Afterward
Choi and Merkel [13] proposed an adaptable preconditioning ma-
trix to solve convergent problems of a viscous flow under a low
Mach number situation. Roe [14] developed averaged variables
method for compressible flow to solve discontinuous phenomenon
occurring at a cell interface. This method was widely used in solv-
ing compressible flow recently. Weiss and Simth [15] extended the
researches of Choi, applied Roe scheme mentioned above with pre-
conditioning method into the solution method of three-dimen-
sional Navier–Stokes equations, and added dual-time stepping to
resolve transient states of a low Mach number flow.

Besides, in order to treat boundary conditions at the inlet and
outlet of the compressible flow properly, Rudy and Strikwerda
[16] proposed a concise non-reflecting boundary condition. Poinsot
and Lele [17] developed Navier–Stokes characteristics boundary
condition (NSCBC) to resolve problems induced by boundary con-
dition of inlet, outlet and no slip on a wall. The velocities of flow
fields investigated by both literature mentioned above were larger
than 0.3 Mach number.

Relatively few researchers investigated natural convection
problems in which the flow is regarded as a compressible fluid
flow. Weiss and Simth [15] adopted the preconditioning method
to simulate a natural convection in a two-dimensional concentric
circles. The temperatures of inner and outer walls were 2000 K
and 1000 K, respectively. The corresponding Rayleigh number
was about 4.7 � 104. The results showed that usage of the precon-
ditioning method could reduce 60 times computational time
approximately. Paillere et al. [18] used the preconditioning method
to calculate a natural convection in a two-dimensional enclosure.
The results indicated that heat transfer rates obtained by the small
temperature difference were close to these obtained by Bossinesq
assumption in spite of high temperatures of heat sources. All the
studies mentioned above were in enclosure situations and did
not consider the boundary conditions of the inlet and outlet.
Yamamoto et al. [19] investigated a natural convection of a circular
cylinder set in an external flow. The preconditioning method was
used to calculate a compressible flow in a natural convection,
and the results had good agreement with experimental results.
Because of an external flow, the problems induced by the boundary
conditions of the inlet and outlet were not treated. With regard to
the study of a high temperature difference, a natural convection of
an open-ended finite length channel in which the Bossinesq
assumption is not used and the flow is regarded as the compress-
ible fluid flow is seldom investigated.

Therefore, the aim of this study is to investigate a natural convec-
tion problem in an open-ended finite length channel numerically. In
order to broaden industrial applications, the temperature difference
between the heat sources of the high and low temperatures is over
several hundred degrees. The Bossinesq assumption is then no longer
suitable for this study. For a more realistic simulation, a compressible
fluid flow is taken into consideration instead of renunciation of the
Bossinesq assumption. Solution methods of Roe, preconditioning
and dual-time stepping are combined to resolve the low compress-
ible fluid flow in a transient state. Besides, a modification of the meth-
od proposed by Poinsot and Lele [17] is conducted to resolve the
reflection problems occurring at both the inlet and outlet of the chan-
nel. For improving the efficiency, the calculation process is parallel.
The transient developments of pressure, flow and thermal fields
are validated. The results obtained by a low temperature difference
(<30 K) condition have good agreement with the existing results
obtained by using the Bossinesq assumption. And the results of the
high temperature difference (>>30 K) conditions show that the Nus-
selt numbers increase but the increasing rate of Nusselt number
decrease with the increment of the temperature difference, and the
Nusselt numbers can be expressed in terms of the Rayleigh number.
The pressures of the insides of inlet and outlet are smaller and larger
than these of the outsides of inlet and outlet, respectively. These
results are first validated and more consistent with realistic
situations.

2. Physical model

An open-ended finite length channel regarded as a physical
model is indicated in Fig. 1. The length and width are l and w,
respectively. A heat surface of which the length and temperature
are l2 and Th, respectively, is installed on the left side of the chan-
nel. The distances from the outlet and inlet to the heat surface are
l1 and l3, respectively. Except the heat surface region, the other
regions are adiabatic. The gravity is downward and the tempera-
ture and pressure of the surroundings are 298.0592 K and
101,300 Pa, respectively.

For facilitating the analysis, the following assumptions are
made.

1. The flow is two-dimensional laminar flow.
2. The fluid is an ideal gas and follows the ideal gas equation of

state.



Fig. 1. Physical model.
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3. No slip conditions on the surface.
4. Non-reflecting conditions on the inlet and outlet.

The governing equations in which the parameters of viscosity
and compressibility of the fluid and gravity are considered simul-
taneously are shown in the following equations.

@U
@t
þ @F
@x
þ @G
@y
¼ S ð1Þ

P ¼ qRT ð2Þ

The contents of U, F, G and S are indicated as follows.

U ¼

q
qu

qv
qE

0
BBB@

1
CCCA

F ¼

qu

qu2 þ P � sxx

quv � sxy

qEuþ Pu� k @T
@x � usxx � vsxy

0
BBB@

1
CCCA

G ¼

qv
qvu� syx

qv2 þ P � syy

qEv þ Pv � k @T
@y � usyx � vsyy

0
BBBB@

1
CCCCA

S ¼

0
�ðq� q0Þg

0
�ðq� q0Þgu

0
BBB@

1
CCCA

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð3Þ
In which E ¼ p
qðc�1Þ þ 1

2 ðu2 þ v2Þ.
The viscosity and thermal conductivity of the fluid are based

upon Sutherland’s law and shown as follows.

lðTÞ ¼ l0
T

T0

� �2
3 T0þ110

Tþ110

kðTÞ ¼ lðTÞcR
ðc�1ÞPr

9>=
>; ð4Þ

where

q0 ¼ 1:1842 kg=m3; g ¼ 9:81 m=s2;

l0 ¼ 1:85� 10�5 N s=m2; T0 ¼ 298:0592 K; c ¼ 1:4;
R ¼ 287 J=kg=K and Pr ¼ 0:72:
3. Numerical method

In a natural convection, the speed of fluid flow is much slower
than that of acoustic wave. The Roe method [14] matching precon-
ditioning method are then adopted to resolve the governing equa-
tions shown in Eq. (1) which can be derived as the following
equation and shown in Eq. (5).

C
@Up

@s
þ @F
@x
þ @G
@y
¼ S ð5Þ

where C is a preconditioning matrix proposed by Weiss and Simth
[15] and Up is a primitive form of [P,u,v,T]t.

Discretize Eq. (5), a first order forward difference is used for the
time term of @Up

@s , and central differences are used for the terms of @F
@x

and @G
@y. The equation expressed by the difference form is indicated

in Eq. (6).

C
Ukþ1

p � Uk
p

Ds
þ 1

Dx
Fk

iþ1
2;j;k
� Fk

i�1
2;j;k

� �
þ 1

Dy
Gk

i;jþ1
2;k
� Gk

i;j�1
2;k

� �
¼ Sk ð6Þ

In Eq. (6) a third order Runge–Kutta method is adopted to resolve
Ukþ1

p , and the detailed processes are indicated as follows.

U
kþ1

3
p ¼ Uk

p þ C�1Rk

U
kþ2

3
p ¼ 3

4
Uk

p þ
1
4

U
kþ1

3
p þ 1

4
C�1Rkþ1

3

Ukþ1
p ¼ 1

3
Uk

p þ
2
3

U
kþ2

3
p þ 2

3
C�1Rkþ2

3

ð7Þ

where

RU ¼ �Ds 1
Dx

FU
iþ1

2;j;k
� FU

i�1
2;j;k

� �
þ 1

Dy
GU

i;jþ1
2;k
� GU

i;j�1
2;k

� �� �
þ SU;

U ¼ k; kþ 1
3
; kþ 2

3
:

Additionally, the method of dual-time stepping is added to
calculate the transient state of the physical model. The derived
equation is shown in Eq. (8).

C
@Up

@s
þ @U
@t
þ @F
@x
þ @G
@y
¼ S ð8Þ

Discretize Eq. (8) and the related difference form is indicated in Eq.
(9).

C
Ukþ1

p � Uk
p

Ds
þ 3Ukþ1 � 4Un þ Un�1

2Dt
þ 1

Dx
Fk

iþ1
2;j;k
� Fk

i�1
2;j;k

� �
þ 1

Dy
Gk

i;jþ1
2;k
� Gk

i;j�1
2;k

� �
¼ Sk ð9Þ

where k is an iteration number of the artificial time step, and n is a

time step of the real time. When the term of the artificial time @Up

@s is

convergent to eð¼ 10�3Þ, the magnitude of the (k + 1)th iteration of
the artificial time term is equivalent to the magnitude of the
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Fig. 2. The grids distribution on the wall.
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(n + 1)th time step of the real time, and Eq. (9) automatically trans-
fers to the Navier–Stokes equation including the time term.

The term of Uk+1 can be linearized by the following term.

Ukþ1 ¼ Uk þMðUkþ1
p � Uk

pÞ ð10Þ

In which M ¼ @U
@Up

.Substitute Eq. (10) into Eqs. (9) and (11) is
obtained.

CþM
3Ds
2Dt

� �
ðUkþ1

p � Uk
pÞ ¼ Rk ð11Þ

where

Rk ¼ � 3Uk � 4Un þ Un�1

2Dt

 !

� 1
Dx

Fk
iþ1

2;j;k
� Fk

i�1
2;j;k

� �
þ 1

Dy
Gk

i;jþ1
2;k
� Gk

i;j�1
2;k

� �� �
þ Sk

Divide both sides of Eq. (11) by CþM 3Ds
2Dt

� �
, and Eq. (12) is derived.

Ukþ1
p ¼ Uk

p þ CþM
3Ds
2Dt

� ��1

Rk ð12Þ

Similarly, the magnitude of Ukþ1
p is obtained by usage of the third

order Runge–Kutta method. In the calculating processes of Eqs.
(11) and (12), the contents of the term of F are divided into two
parts of inviscid term Finviscid and viscous term Fviscous.

Finviscid¼

qu

qu2 þ P

quv
qEuþ Pu

0
BBB@

1
CCCA ð13Þ

Fviscous ¼

0
�sxx

�sxy

�k @T
@x � usxx � vsxy

0
BBB@

1
CCCA ð14Þ

Utilize methods of the Roe [14] and preconditioning to calculate the
magnitude of Finviscid at the position of iþ 1

2

� 	
between the cells for

low Mach number condition.

Finviscid;iþ1
2
¼ 1

2
ðFR þ FLÞ �

1
2
fjC�1ApjDUPg ð15Þ

where Ap ¼ @F
@Up

� �
is a flux jacobian.

The magnitude of DUP in Eq. (15) is obtained by the third order
precision of MUSCL (Monotone Upwind-centered Schemes for Con-
servation Laws) method.

DUP ¼ uL
iþ1=2 � uR

iþ1=2 ð16Þ
uL

iþ1=2 ¼ ui þ 1=2DuL
iþ1=2 ð17Þ

uR
iþ1=2 ¼ ui � 1=2DuR

iþ1=2 ð18Þ

In which

DuL
iþ1=2 ¼

2
3
ðuiþ1 � uiÞ þ

1
3
ðui � ui�1Þ ð19Þ

DuR
iþ1=2 ¼

2
3
ðuiþ1 � uiÞ þ

1
3
ðuiþ2 � uiþ1Þ ð20Þ

The method for calculating the magnitude of Finviscid was proposed
by Stokes.

sxx ¼ �
2
3
l @u

@x
þ @v
@y


 �
þ 2l @u

@x
ð21Þ

sxy ¼ l @u
@y
þ @v
@x


 �
ð22Þ

The forth central difference is adopted to calculate the magnitudes
of the difference terms in Eqs. (21) and (22).
@u
@x
¼ ui�2 � 8ui�1 þ 8uiþ1 � uiþ2

12Dx
þ oðDx4Þ ð23Þ

On the adiabatic surface, the boundary conditions are

Pði; 0Þ ¼ Pði;1Þ
uði; 0Þ ¼ �uði;1Þ
vði;0Þ ¼ �vði;1Þ
Tði; 0Þ ¼ Tði;1Þ

ð24Þ

On the heat surface, the boundary conditions are

Pði; 0Þ ¼ Pði;1Þ
uði; 0Þ ¼ �uði;1Þ
vði;0Þ ¼ �vði;1Þ
Tði; 0Þ ¼ 2Th � Tði;1Þ

ð25Þ

0 is ghost cell and 1 is the first grid from the wall, the positions of 0
and 1 are shown in Fig. 2.

As for the boundary conditions of the outlet and inlet, in order
to avoid the flow in the channel polluted by the reflection of acous-
tic waves mentioned above, the non-reflecting boundary condi-
tions are then necessarily used at the outlet and inlet, respectively.

In a high speed compressible flow condition, the method of
LODI (local one-dimensional inviscid relations) proposed by Poin-
sot and Lele [17] was suitably adopted for determining the non-
reflecting boundary conditions at the outlet and inlet. However, a
preconditioning matrix is not necessary in the above method that
causes this method to be not appropriately adopted for determin-
ing the non-reflecting boundary conditions at the outlet and inlet
under a low speed compressible flow. As a result, modification of
the method mentioned above is necessary for resolving the outlet
and inlet boundary conditions under an extremely low speed com-
pressible flow. The variations of densities of fluids are small near
the regions of the outlet and inlet, respectively. The term of S indi-
cated in Eq. (1) can be neglected. Then a flow field near the regions
of outlet and inlet can be approximately described by the following
one-dimensional Navier–Stokes equation.

C
@Up

@s
þ @F
@x
¼ 0 ð26Þ

Multiply C�1 on the left side of Eq. (26) in order to transform the
term of @F

@x to be a primitive form.

@Up

@s
þ C�1 @F

@x
¼ 0 ð27Þ
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Transform the term of C�1 @F
@x

C�1 @F
@x
¼ C�1 @F

@Up

@Up

@x
¼ C�1Ap

@Up

@x
ð28Þ

Substitute Eq. (28) into Eq. (26), obtain the following equation
based on the primitive form.

@Up

@s
þ C�1Ap

@Up

@x
¼ 0 ð29Þ

A similar transformation of the term of C�1Ap is executed to obtain
the characteristic velocities of the outlet and inlet.

C�1Ap ¼ KkK�1 ð30Þ

where K is an eigenvector, k are eigenvalues of the term of C�1Ap, as
well k are characteristic velocities at the outlet and inlet. According
to Dennis et al. [20], transform the orders of u (original flow speed)
and c (original acoustic wave speed) to become the similar orders of
u0 (modified flow speed) and c0 (modified acoustic wave speed), and
the following equation is obtained.

k ¼

k1

k2

k3

k4

0
BBB@

1
CCCA ¼

u

u

u0 þ c0

u0 � c0

0
BBB@

1
CCCA ð31Þ

where u0 ¼ ðbþ1Þu
2 and c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðb�1Þ2þ4bc2
p

2 .
Let

L ¼ kK�1 @Up

@x
ð32Þ

The contents of the term of L are

L ¼

L1

L2

L3

L4

0
BBB@

1
CCCA ¼

u @T
@x þ 1

qj
@P
@x � j @P

@x

� 	
�u @v

@x

ðu0 þ c0Þ @P
@x � qðu0 � c0 � uÞ @u

@x

� �
ðu0 � c0Þ @P

@x � qðu0 þ c0 � uÞ @u
@x

� �

0
BBBB@

1
CCCCA ð33Þ

The physical meaning of the term of L is the magnitude of wave
amplitude with time variation.

Substitute Eq. (32) into Eq. (29).

@Up

@s
þ KL ¼ 0 ð34Þ

Derive Eq. (34), the following equations which describe the pressure
and velocities vertically to stride over the outlet and inlet are
obtained, respectively.
@P
@s
þ 1

2c0
½L3ðu0 þ c0 � uÞ � L4ðu0 � c0 � uÞ� ¼ 0 ð35Þ

@u
@s
þ 1

2qc0
ðL3 � L4Þ ¼ 0 ð36Þ

At the outlet, the magnitude of wave amplitude reflecting from the
outlet back to the channel varying with time is L4. For avoiding the
effect of the pollution induced by the reflection of the acoustic wave
on the computational domain in the channel, the magnitude of L4 is
conveniently assigned to be 0. Then Eqs. (35) and (36) become Eqs.
(37) and (38), respectively.

@P
@s
þ 1

2c0
½L3ðu0 þ c0 � uÞ� ¼ 0 ð37Þ

@u
@s
þ 1

2qc0
L3 ¼ 0 ð38Þ

From Eq. (38)

L3 ¼ �2qc0
@u
@s

ð39Þ

Substitute Eq. (39) into Eqs. (37) and (40) is obtained.
@P
@s
� qðu0 þ c0 � uÞ @u

@s
¼ 0 ð40Þ

Eq. (40) means the variations of pressure and velocity with time
near the outlet. As a result, discretize Eq. (40), and the pressure
boundary condition at the outlet can be obtained.

Pkþ1
out ¼ Pk � qðu0 þ c0 � uÞðukþ1 � ukÞ ð41Þ

where k is an iteration number and the same iteration number in
Eq. (9).

For the same reason, at the inlet the magnitude of L3 is also con-
veniently assigned to be 0. Eqs. (35) and (36) become the following
equations, respectively.

@P
@s
� 1

2c0
½L4ðu0 � c0 � uÞ� ¼ 0 ð42Þ

@u
@s
� 1

2qc0
L4 ¼ 0 ð43Þ

The equation indicating the variations of pressure and velocity with
time near the inlet is shown as follows.

@P
@s
� qðu0 � c0 � uÞ @u

@s
¼ 0 ð44Þ

Discretize Eq. (44) and obtain the pressure boundary condition at
the inlet.

Pkþ1
inlet ¼ Pk � qðu0 � c0 � uÞðukþ1 � ukÞ ð45Þ

A procedure calculating the equations mentioned above is briefly
described as follows.

(1) Assign the initial conditions of the pressure, velocity and
temperature in the channel.

(2) Use Eqs. (41) and (45) to calculate the pressures of the outlet
and inlet.

(3) Use MUSCL method calculating Eqs. (17), (18) and (16) to
obtain the magnitudes of uL

iþ1=2;u
R
iþ1=2 and DUP.

(4) Substitute the magnitude of DUP into Eq. (15) and use Roe
method to calculate the magnitude of the term of Finviscid.

(5) Calculate Eq. (23) to obtain the magnitudes of viscous terms
and substitute into Eq. (14).

(6) Calculate Eq. (7) to obtain a new magnitude of Ukþ1
p .

(7) Under a steady state, examine the convergence of the itera-
tional computation of Ukþ1

p . Repeat the processes from (2)–
(6) if the convergent condition is not satisfied.

Under a transient state, calculate Eq. (9) and examine the con-
vergence of the iterational computation of the @Up

@s . When the con-
vergent condition is satisfied, the magnitude of Ukþ1

p will be
regarded as that of Up of the (n + 1)th time step and the process
proceeds to next time step. In order to economize the consumption
of computing time, parallel computations are executed by eight
processors.

4. Results and discussion

The working fluid used in this study is air and the Prandtl num-
ber is 0.72. The pressure and temperature of surroundings are
101,300 Pa and 298.0592 K, respectively. Two kinds of grid distri-
butions are used to examine the adoptable grid distribution used
in this study. The results of distributions of u, v and T parallel to
the y axis at the center of the heat surface are shown in Fig. 3.
The deviations of both the results obtained by the two kinds of grid
distributions are slight, the uniform grid distribution of 500 � 40 is
used.

A natural convection in an enclosure of which the temperatures
of two heat sources are 606 K and 594 K, respectively, was



Fig. 3. Comparisons of velocity and temperature profiles parallel to y axis at the
center of the heat surface (Ra = 104).
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investigated by Paillere et al. [18]. The compressibility and viscosity
of the working fluid were considered, and the definitions of local
Nusselt and Rayleigh numbers are separately indicated as follows.

Nu ¼ L
k0ðTh � TcÞ

kðTÞ @T
@y

� �
w

ð46Þ

Ra ¼ Pr
gq2

0ðTh � TcÞL3

T0lðTÞ2
ð47Þ

The local Nusselt numbers of both the results shown in Fig. 4 have
good agreement. The numerical method of this study is correct.

According to Gray [9], when the temperature difference of nat-
ural convection between two heat sources is smaller than 30 K, the
results based on the Bossinesq assumption are well consistent with
experimental results. In order to examine the suitability of this
study under a low temperature difference, the temperature differ-
ence of two heat sources of 10 K is assigned and the computational
method developed by this study in which the Bossinesq assump-
tion is not yielded is used to investigate the same subject investi-
gated by Churchill and Chu [21] and Fu and Huang [4]. The
definitions of the average Nusselt number Nu and Rayleigh number
Ra are shown as follows, respectively.

Nu ¼
Z

l2

l2

ðTh � TcÞ
@T
@y

� �
w

dx



l2 ð48Þ

Ra ¼ Pr
gq2

0bðTh � TcÞl3
2

l2 ð49Þ

where b is thermal expansion coefficient.
Use the same physical model of Fu and Huang [4] and Churchill

and Chu [21], and the magnitudes of the characteristic length used
in Eq. (49) are adjusted to match the same Rayleigh numbers
adopted in [21,4]. The results are shown in Fig. 5, and all the results
are in good agreement. The results of this study under a low tem-
perature difference are reasonable.

In Fig. 6, the variations of streamlines, pressure contour and
thermal field with time under Ra = 104 are indicated. The initial
conditions of the temperature and pressure of the fluid in the chan-
nel are the same as these of the surroundings. As time t > 0, the
temperature of the heat surface is raised to Th. The conditions of
l1/l2 = 19, l0/l2 = 25, w/l2 = 2 and DT = Th � Tc = 110 K are assigned.
Shown in Fig. 6(1), the time t is 0.005 s, heat energy transferred
to the fluid from the heat surface is mainly dependent on a heat
Fig. 4. The distributions of local Nusselt number on the wall of high tempreature.



Fig. 5. Comparisons with the results of the present study and other papers.
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conduction mode indicated in Fig. 6(1)c. Because of the absorption
of heat energy, the densities of the fluids become light and the vol-
ume of the fluid shown in Fig. 6(1)b is expanded. Consequently,
some fluids shown in Fig. 6(1)a are exhausted to the outsides of
the outlet and inlet, respectively. The magnitudes of pressure
shown in the figure are the pressure differences as well as the gage
pressures between the static pressures of the fluids and the pres-
sure of surroundings. As the time t increases to 0.02 s, the influence
of buoyancy force which leads the fluids to flow upwards starts to
appear. Below the heat surface region the directions of the fluid
flows change from downward to upward shown in Fig. 6(2)a, and
accompanying with the upward flow mentioned above a circula-
tion zone is formed near the heat surface region which causes a
low pressure zone to appear shown in Fig. 6(2)b. Simultaneously
the thermal field shown in Fig. 6(2)c extends upwards.

As the time is 0.05 s, at the inlet the fluid flows are affected by
the buoyancy force, and the fluids are sucked from the outside of
the inlet and flow into the channel indicated in Fig. 6(3)a. The cir-
culation zone is enlarged and raised gradually. Accompanying with
the rising of circulation zone the low pressure zone is also raised.
And the plus and minus pressure difference zones are formed
above and below the lowest pressure zone, respectively. Mean-
while the thermal field extends further. As the time equals to
0.1 s, the influence of buoyancy force increases continuously. In
Fig. 6(4)a the flow structure in which the fluids are sucked from
the outside of the inlet and spat to the outside of the outlet is
approximately formed. And the large circulation zone shown in
the above figure is divided into two small circulation zones. The
variations of the magnitudes of pressure difference from the inlet
to the outlet are from minus to plus continuously.

Finally, the development of flow structure finishes at t = 1 s
indicated in Fig. 6(5)a. The heat surface is installed on the left side
of the channel which causes the fluids induced by the natural con-
vection mainly to flow along the left side and to form a large circu-
lation zone on the right side. The variations of the magnitudes of
pressure difference from the inlet to the outlet are smooth. At
the inlet, the magnitude of pressure difference is minus which
means the fluids to be sucked from the outside of the inlet and
to flow into the channel. At the outlet, the magnitude of pressure
difference is plus which indicates the fluids to be discharged to
the outside of the outlet naturally. Shown in [6], under the usage
of Boussinesq assumption condition the magnitude of pressure
difference at the outlet ceased to be negative which means the
pressure at the outlet to be equivalent to that of the surroundings.
It is arguable that under no pressure difference condition, the fluids
can flow from the inside to the outside of the outlet.

In Fig. 7, the velocity profile obtained by this work at the inlet
under a steady state (t = 1 s) is indicated. The velocity profile is
almost a uniform flow which was validated by the experimental
results [6]. An assumption of a uniform flow at the inlet always
made in the previous studies is reasonable.

Shown in Fig. 8, comparisons of the average mass flow rate of
the channel �_mx with the mass flow rate at each cross section _mx

of the channel are indicated. The definitions of �_mx and _mx are
expressed as follows, respectively.

�_mx ¼
Z l0

0

Z w

0
qudydx=l0 ð50Þ

_mx ¼
Z w

0
qudy ð51Þ

Shown in the Fig. 8, the maximum derivation between �_mx and _mx is
about 3%. According to the results of Xu et al. [23] and Lenormand
et al. [24], in a duct flow through the influence of the friction
induced by shear stress and the dissipation induced by numerical
calculation, the conservation of mass flow rate can not be held com-
pletely. The mass flow rate will decrease gradually from inlet to
outlet, and this phenomenon is more remarkable in a compressibly
viscous flow. So the results indicated in Fig. 8 are reasonable and
accurate.

In Fig. 9, comparisons of the local Nusselt numbers along the
heated surface for different Rayleigh numbers in which only the
parameter of temperature difference is different are shown. Natu-
rally the larger the temperature difference is, the larger the Nusselt
number is obtained. However the increasing rate of the local Nusselt
number becomes small as the temperature difference increases.

The average Nusselt number Nul2 which is slightly different
from that defined in Eq. (48) is defined as follows.

Nul2 ¼
Z

l2

l2

k0ðTh � TcÞ
kðTÞ @T

@y

� �
w

dx



l2 ð52Þ

A correlation equation based on the numerical results of this work
is derived and shown in Eq. (53).

Nul2 ¼ ð1=1:26Þ � Ra
1

4:69 ð53Þ

The relationships between the numerical results and correlation
equation are indicated in Fig. 10. The equation is adoptable for a
wide temperature differences range that is useful for industrial
applications.

Usually a fully developed flow is used as a boundary condition
of an outlet when a study of incompressible channel flow is exe-
cuted. In order to match the boundary condition of fully developed
flow, the length of the channel should be elongated. The condition
of fully developed flow at the outlet is not necessary in this study.
The effect of l1 which is measured from the heat surface to the out-
let and indicated in Fig. 1 on the average Nusselt number is inves-
tigated and shown in Fig. 11. The corresponding correlation
equation is indicated in Eq. (54).

Nul2 ¼ ½logðl1=l2 þ 1Þ�0:28 þ 4:49 ð54Þ

Since the walls of the channel are insulated except the heat surface
and the temperature and pressure of the surroundings are
298.0592 K and 101300 Pa, respectively. The temperatures of the
fluids heated by the heat surface in the channel are higher than that
of the surroundings which cause the densities of fluids in the chan-
nel to be less than that of the surroundings. Consequently, the
buoyancy force always exists in the whole channel, so the longer
the channel is, the influence of the buoyancy force on the fluid flow



Fig. 6. (1) The variants of streamlines, pressure contour and thermal field with t time under (Ra = 104) (l1/l2 = 19). (2) The variants of streamlines, pressure contour and
thermal field with time under (Ra = 104) (l1/l2 = 19). (3) The variants of streamlines, pressure contour and thermal field with time under (Ra = 104) (l1/l2 = 19). (4) The variants
of streamlines, pressure contour and thermal field with time under (Ra = 104) (l1/l2 = 19). (5) The variants of streamlines, pressure contour and thermal field with time under
(Ra = 104) (l1/l2 = 19).
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Fig. 7. The velocity profile at the inlet at t = 1 s condition (l1/l2 = 19).

Fig. 8. Comparisons of the average mass flow rate of the channel with the mass
flow rate at each cross section of the channel (l1/l2 = 19).

Fig. 9. Comparisons of the local Nusselt numbers on the heat surface for different
Rayleigh numbers (l1/l2 = 19).

Fig. 10. Comparisons of the correlation equation and the present results (l1/l2 = 19).
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becomes more apparent. Accompanying with the above phenom-
ena, the average Nusselt number increases with the increment of
the length of the channel shown in Fig. 11. The increasing rate of
the average Nusselt number decreases as the ratio of l1/(l1 + l1) is
over 10. However, when the conditions of temperature and pressure
of the surroundings are different from these of the study, the results
of this study will be varied.

5. Conclusions

For expanding industrial applications, a compressible fluid flow
is considered instead of renunciation of the Bossinesq assumption
in an investigation of a natural convection in a channel. Solution
methods of Roe scheme, preconditioning and dual-time stepping
are combined to solve governing equations and non-reflecting con-
ditions are adopted at the inlet and outlet. Based on the results, the
following can be concluded:
1. Under a low temperature difference condition, the results
obtained by the Bossinesq assumption and the present work
are in good agreement.

2. Under a high temperature difference condition, the results
obtained by the present work are reasonable.

3. The pressure at the inside of outlet is higher than that at the
outside of the outlet.

4. Non-reflecting conditions are suitable for the boundary condi-
tions at the inlet and outlet of the channel.

5. Two correlation equations which separately correlate the aver-
age Nusselt number to the Rayleigh number and the length of
channel are proposed.



Fig. 11. The variations of average Nusselt number Nul2 with different ratios of l1/l2
(Ra = 104).

2580 W.-S. Fu et al. / International Journal of Heat and Mass Transfer 52 (2009) 2571–2580
Acknowledgements

The authors gratefully acknowledge the support of the Natural
Science Council, Taiwan, ROC under Contact NSC96-2221-E-009-
059 and National Center for High-Performance Computing of
Taiwan, ROC.

References

[1] P.H. Oosthuzien, A numerical study of laminar free convective flow through a
vertical open partially heated plane duct, ASME HTD 32 (1984) 41–48.

[2] D. Naylor, J.M. Floryan, J.D. Tarasuk, A numerical study of developing free
convection between vertical parallel plates, Trans. J. Heat Mass Transfer ASME
113 (1991) 620–626.
[3] D.A. Hall, G.C. Vliet, T.L. Bergman, Natural convection cooling of vertical
rectangular channel in air considering radiation wall conduction, J. Electronic
Packaging Trans. ASME 121 (1999) 75–84.

[4] W.S. Fu, C.P. Huang, Effects of a vibrational heat surface on natural convection
in a vertical channel flow, Int. J. Heat Mass Transfer 49 (2006) 1340–1349.

[5] J.M. Floryan, M. Novak, Free convection heat transfer in multiple vertical
channels, Int. J. Heat Fluid Flow 16 (1995) 245–253.

[6] J.R. Dyer, The development of laminar natural-convective flow in a vertical
uniform heat flux duct, Int. J. Heat Mass Transfer 18 (1975) 1455–1465.

[7] D. Gilles, F. Alberto, Laminar natural convection in a vertical isothermal
channel with symmetric surface-mounted rectangular ribs, Int. J. Heat Mass
Transfer 23 (2002) 519–529.

[8] S.A.M. Said, M.A. Habib, H.M. Badr, S. Anwar, Numerical investigation of
natural convection inside an inclined parallel-walled channel, Int. J. Numer.
Methods Fluids 49 (2005) 569–582.

[9] D.D. Gray, A. Giorgini, The validity of the Boussinesq approximation for liquids
and gases, Int. J. Heat Mass Transfer 19 (1976) 545–551.

[10] W.R. Briley, H. McDonald, S.J. Shamroth, At low Mach number Euler
formulation and application to time iterative LBI schemes, AIAA 21 (10)
(1983) 1467–1469.

[11] E. Turkel, Preconditioned methods for solving the incompressible and low
speed compressible equations, J. Comput. Phys. 72 (1987) 277–298.

[12] D. Choi, C.L. Merkel, Application of time-iterative schemes to incompressible
flow, AIAA 25 (6) (1985) 1518–1524.

[13] D. Choi, C.L. Merkel, The application of preconditioning in viscous flows, J.
Comput. Phys. 105 (1993) 207–223.

[14] P.L. Roe, Approximation Riemann solver, parameter vectors, and difference
schemes, J. Comput. Phys. 43 (1981) 357–372.

[15] J.M. Weiss, W.A. Simth, Preconditioning applied to variable and constants
density flows, AIAA 33 (1995) 2050–2056.

[16] D.H. Rudy, J.C. Strikwerda, A nonreflecting outflow boundary condition for
subsonic Navier–Stokes calculations, J. Comput. Phys. 36 (1980) 55–70.

[17] T.J. Poinsot, S.K. Lele, Boundary conditions for Navier–Stokes, J. Comput. Phys.
101 (1992) 104–129.

[18] H. Paillere, C. Viozat, A. Kumbaro, I. Toumi, Comparison of low Mach number
models for natural convection problems, Heat Mass Transfer 36 (2000) 567–
573.

[19] S. Yamamoto, D. Niiyama, R.S. Beyong, A numerical method for natural
convection and heat conduction around and in a horizontal circular pipe, Int. J.
Heat Mass Transfer 47 (2004) 5781–5792.

[20] J. Dennis, P. Thomas, B. Pieter, Recent Enhancements to OVERFLOW, Aerospace
Sciences Meeting and Exhibit, 35th, Reno, NV, 1997.

[21] S.W. Churchill, H.H.S. Chu, Correlating equations for laminar and turbulent free
convection from a vertical plate, Int. J. Heat Mass Transfer 18 (1975) 1323–
1329.

[23] X. Xu, J.S. Lee, R.H. Pletcher, A compressible finite volume formulation for large
eddy simulation of turbulent pipe flows at low Mach number in Cartesian
coordinates, J. Comput. Phys. 203 (2005) 22–48.

[24] E. Lenormand, P. Saguat, L.T. Phuoc, Large eddy simulation of subsonic and
supersonic channel flow at moderate Reynolds number, Int. J. Numer. Methods
Fluids 32 (2000) 369–406.


	An investigation of a high temperature difference natural convection in a finite length channel without Bossinesq assumption
	Introduction
	Physical model
	Numerical method
	Results and discussion
	Conclusions
	Acknowledgements
	References


